Remove set_vector() across all Architectures and BSPs
Google Summer of Code Program 2025 Project Proposal

Sunil Hegde
Discord: NotSoDumb

University of Visvesvaraya College of Engineering
Bengaluru, India

Project Abstract

The set_vector() function has been deprecated due to improper pointer usage. This
project aims to remove its implementations, prototypes, and usages across all
architectures and BSPs. It will be replaced with rtems_interrupt_handler_install(),
rtems_interrupt_catch(), _CPU_ISR_install_raw_handler(), or alternative methods,
depending on whether the interrupt should be unmasked or handled using non-RTEMS
ISRs.

Project Scope

Medium(approx. 175 hours)

Project Description

When an interrupt occurs (either hardware or software) in the OS, they are handled by
Interrupt service routines (ISR) or in lay terms a method to handle interrupts. In RTEMS,
the interrupt handler takes care of this job. It is important to note here that different
architectures or BSPs use different methods to handle these interrupts and historically,
In RTEMS, set_vector() with different implementations is used for this purpose.

set_vector() function:

Function prototype:

rtems_isr_entry set_vector(

rtems_isr_entry handler, /* ISR routine */
rtems_vector_number vector, /* Vector number */
int type /* RTEMS or RAW interrupt */
)s
Parameters:

- handler: The ISR to be installed for the specified interrupt vector.

- vector: The interrupt vector number where the ISR will be installed.

- type: Specifies the nature of the interrupt handler. A value of @ indicates a "raw"
handler that bypasses RTEMS interrupt management like
_CPU_ISR_install_raw_handler(), while 1 indicates an RTEMS-managed handler
like rtems_interrupt_catch().

Return Value:
The function returns the previous ISR associated with the specified vector, allowing for
restoration if needed.

However, the set_vector() function has been identified as unsafe and is slated for
removal across all architectures and Board Support Packages (BSPs) in RTEMS because:
- Incompatible Function Pointers: It has been reported to cause warnings due to

incompatible pointer types.

- Ambiguous Implementation: The implementation of set_vector() varies across
BSPs, leading to inconsistencies and potential misconfigurations. For instance, the
RTEMS BSP and Driver Guide outlines how set_vector() is responsible for
installing an interrupt vector and invokes support routines necessary to install an
interrupt handler as either a "raw" or an RTEMS interrupt handler.

A simple grep shows that set_vector() is at least used 60 times.

BSP in v r() to Install ISR
The following BSPs contain instances where set_vector() is used to install ISRs, along
with the files where the function is referenced:
e SPARC
o erc32
m bsps/sparc/erc32/console/erc32_console.c
m bsps/sparc/erc32/start/setvec.c
m bsps/sparc/erc32/start/bspsmp.c
m bsps/sparc/erc32/include/tm27.h
m bsps/sparc/erc32/include/bsp.h

m bsps/sparc/leon2/console/console.c
m bsps/sparc/leon2/start/setvec.c

m bsps/sparc/leon2/include/tm27.h

m bsps/sparc/leon2/include/bsp.h

m bsps/sparc/leon3/start/setvec.c
m bsps/sparc/leon3/include/tm27.h
m bsps/sparc/leon3/include/bsp.h
o shared
m bsps/sparc/shared/gnatcommon.c
e Microblaze
o microblaze_fpga
m bsps/microblaze/microblaze_fpga/include/tm27.h
e Nios2
o nios2_iss (uses non-rtems ISRs for raw interrupt)
m bsps/nios2/nios2_iss/start/setvec.c
m bsps/nios2/nios2_iss/clock/clock.c
m bsps/nios2/nios2_iss/include/bsp.h
m bsps/nios2/nios2_iss/btimer/btimer.c
e M68kK
o mcf5235
m bsps/m68k/mcf5235/clock/clock.c
m bsps/m68k/mcf5235/include/tm27.h
m bsps/m68k/mcf5235/include/bsp.h
o av5282
m bsps/m68k/av5282/clock/clock.c
m bsps/m68k/av5282/include/tm27.h
m bsps/m68k/av5282/include/bsp.h
o mcf5329
m bsps/m68k/mcf5329/clock/clock.c
m bsps/m68k/mcf5329/include/tm27.h
m bsps/m68k/mcf5329/include/bsp.h
o uC5282
m bsps/m68k/uC5282/clock/clock.c
m bsps/m68k/uC5282/include/tm27.h

m bsps/m68k/uC5282/include/bsp.h
o genmcf548x
m bsps/m68k/genmcf548x/clock/clock.c
m bsps/m68k/genmcf548x/include/tm27.h
m bsps/m68k/genmcf548x/include/bsp.h
e Powerpc
m bsps/powerpc/shared/vme/README.md
e Template structure for new BSPs in no_cpu/no_bsp
m bsps/no_cpu/no_bsp/start/setvec.c
m bsps/no_cpu/no_bsp/clock/ckinit.c
m bsps/no_cpu/no_bsp/include/bsp.h
e Shared code across all BSPs
m bsps/shared/dev/serial/mc68681.c
m bsps/shared/dev/serial/z85c30.c
m bsps/shared/start/setvec.c

Additionally, set_vector() is used in some core functionalities within the cpukit. It is
present in this file:
- cpukit/libgnat/ada_intrsupp.c

To address the depreciation of set_vector() usage, instructions are provided by Sebastian
Huber in Issue #4171. The approach suggests 4 steps:
1. Unmasking corresponding interrupts in rtems_interrupt_entry_install() or
rtems_interrupt_handler_install() or rtems_interrupt_catch()
2. Replacing function call having (*,*, 1) with rtems_interrupt_catch() or
rtems_interrupt_handler_install().
3. Replacing function call having (*,*, 0) with _CPU_ISR_install_raw_handler()
4. Removing implementations of set_vector()

rtems_interrupt_handler_install() function installs a specified interrupt entry at a given
interrupt vector. It allows for the installation of either a unique or shared interrupt
handler, as specified by the options parameter.

rtems_interrupt_catch() establishes an ISR for the system by installing the RTEMS
interrupt wrapper in the processor’s Interrupt Vector Table and the address of the user’s
ISR in RTEMS' Vector Table.

_CPU_ISR_install_raw_handler() directly installs a hardware ISR into the processor's
trap table for a specified vector, bypassing the RTEMS interrupt management layer to
minimize overhead.

These replacements provide several advantages over the existing function:

- Documentation: The new functions are well documented, facilitating easier
implementation and maintenance.

- Type Safety: They provide type safety, reducing the likelihood of warnings and
errors during compilation.

- Uniformity Across BSPs: Their adoption promotes consistency across different
Board Support Packages (BSPs), simplifying development and debugging
processes.

The approach is straightforward and the changes can be implemented incrementally by
tackling one BSP at a time. Unmasking corresponding interrupts requires a new helper
function to be written to reduce redundancy. I have explored different ways to
implement the helper function with respect to its file structure and for now it felt best to
follow how set_vector() was implemented previously.

I am particularly interested in this project because I have a keen interest in
understanding how interrupts are managed within operating systems, a topic I enjoyed
learning during my coursework. Given that interrupt handling is a core functionality in
operating systems, I am eager to learn its implementation within RTEMS.

https://gitlab.rtems.org/rtems/rtos/rtems/-/issues/4171

Pr

Deliverabl

June 2 (coding begins)
- I already have an RTEMS development environment set-up for SPARC BSPs and
I plan to start with it.
- Finish researching on topics like interrupts and how it is handled across RTEMS.
- Already get familiar with RTEMS coding practices to start coding right away.

July 14-18 (Midterm Evaluation)
- Remove the functions from at least 60% of the code base, get it reviewed and
merged incrementally with one BSP at a time.
- Also look into which method would be best to declare and implement a helper
function.

August 25- September 1 (Final Evaluation)
- Finish replacing the function in the entire code base with all the improvements
and include all the suggested changes.
- Finish cleaning up of the code and the documentation, fix formatting, recheck
and remove if redundant code is present anywhere, remove confusion in the
documentation by explicitly specifying that set_vector() is obsolete and lay out
general replacement pattern for the function in user document and get all the
changes approved for merging.

Post GSOC
- I will be maintaining this project and will definitely address issues if anything
comes up in the future.
- I plan to take up other tasks during GSoC outside of this project’s scope(without
compromising on the main project) like this issue or installing RTEMS on
RaspberryPi3 and work on these well past GSoC as a contributor.

h 1

March 24 - April 8 (Application Peri
- I already have set up my environment and have started working on the issue. I
changed the code in sparc/erc32 BSP and submitted a draft MR for inputs,
suggestions, and changes.

Here is the link to the draft MR.

- I have created a simple test application which uses set_vector() and
rtems_interrupt_catch() to install the same ISR to check if replacing the former
with later glves out the same expected output. Here is a screenshot:

unil: ~/Deskto / Ttems-Tun --1 1d/sparc-rtens7-erc32/hello. exe

4 | packaged by Anacunda Inc. | mvaln Jur :12:24) [GCC 11.2. D]
with-glibc2.36 (1.0-31-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.1.128-1 (2025-02-87) x86_64)

wlator 2.30, copyright Jiri Gaisler 2020

ERC32 emulation enabled

Loaded build/sparc-rtems7-erc32/hello.exe, entry 0x@2000000
TEST BEGIN

For) #

legacy APT handler

handler worked correctly **

ith de-lH APT handler

errupt_catch() handler worked correctly ***

wn]
7.0.0.2623dac93cb8c246eb5c711adeddefdcef1609cd
s: 13.3.0 28240521 (RTEM . RSB d647353d439159479236b2ec51b9c2e9f5b19f67, Newlib 1b3dcfd)

cpu @ ir r mode \tt @x101)
2047792 0200c400: 91d02000 ta @x@
Run time 0:00:00.259944

- I will focus on my proposal and improve it with suggestions from mentors.

https://gitlab.rtems.org/rtems/programs/gsoc/-/issues/5
https://gitlab.rtems.org/rtems/rtos/rtems/-/merge_requests/447

April 8 - May 8 (Acceptance Waiting Period)
- Familiarize myself with installing and using multiple BSPs on my computer.
- Learning more about creating an RTEMS application and creating some tests
specifically for this project.
- Research the use of rtems_interrupt_handler_install() and explore how
rtems_interrupt_handler_install() provides a unified approach to handling both
software and hardware interrupts, simplifying the interrupt management process
and examine the potential of passing arguments to certain drivers using this
function.

I will be having my Sem End exams during this time, so I will try my best to stay
on track.

M -June 1 mmunity Bonding Peri
- I will learn how RTEMS interrupts work in detail referring to the documentation
and other sources if necessary.
- I will discuss my proposed solution with my mentors and iteratively improve the
implementation for 1 or 2 BSPs to understand the process and procedure.
- By this time I will also be sure of the benefits of
rtems_interrupt_handler_install() over rtems_interrupt_catch() and
_CPU_ISR_install_raw_handler() in different cases and how to use it.
- I plan to reach out to contributors who have worked on interrupts to learn how
to test the changes, to detect and rectify if any new issues are created because of
my changes.
- Making a roadmap at this stage would be best to stay on track and reach up to
the expected goals.

June 2 - July 14 (First Half)
- I will start with removing all the set_vector() calls in the SPARC BSPs targeting

parts of the shared code and one BSP at a time. I will then remove its
implementation and declaration.
- The current tests are not detecting the warnings, so I need to create new tests
to validate these changes. If an issue occurs, I will:
- Analyze the failure logs to pinpoint the cause.
- Compare with previous behavior to determine if the issue arises from the
replacement approach or an underlying dependency.
- Engage with mentors and maintainers to discuss possible fixes.
By following these steps, I will ensure the stability of the code before submitting
each MR.
- I will then move on to m68k and microblaze one after the other following the
same steps.
- I will finish documentation concerning these changes and add new information if
necessary.

ly 20 - A t2 nd Half,

- With all the previous changes in place, I will move on to nios2, powerpc(here a
README file suggests to use set_vector()), no_cpu, and finally shared code if
anything is left in there.

- After finishing work on all the BSPs, i will do the same in cpukit and in testsuites
if uses are found in it.

- All this while I will be taking rough notes on the changes I made and this will
be helpful in writing the documentation at this point.

Future Improvements

As this project aims to remove the set_vector() function, areas of improvement in the
future can be better handling of unmasking and clearing the interrupt vectors. Other
than this, improvement can be done in tests or the documentation.

Continued Involvement

Working on Operating Systems is interesting and I plan to explore memory protection
improvements in RTEMS as a potential future project, given its complexity and
importance. I plan to learn more about RTEMS with the help of the community and work
my way to hopefully become a maintainer too.

Other Commitments

I'm a third-year engineering student with no major commitments besides my
semester-end exams. My upcoming exams run from April 15 to the first week of May,
which falls within the waiting period, so they won't be an issue. The next semester-end
exams are in October, which also won’t interfere. While I have two internal exams (each
lasting two days), they won't affect my contributions, as my next semester has easier
subjects, requiring less time off.

Eligibility
I confirm that I am eligible.

Major Challenges foreseen

- One of the major challenges will be installing the BSPs on my computer. It will
take a lot of time to build a BSP and then test it later.

- Since the changes are being made to existing code, I need to be cautious to avoid
unintended side effects. Modifying existing code is more challenging than writing
new code, as it requires understanding the current implementation and
preventing any unintended side effects.

- Initially, learning the code and navigating the project may take time, but I am
confident I will improve with familiarity.

- This will be my first contribution to a large project, so I will need to invest extra
effort in understanding the codebase structure.

References

- RTEMS Classic API Guide

- Operating System Concepts by Abraham Silberschatz, Greg Gagne, and Peter
Baer Galvin

- Issue #5215 and Issue #4171

Relevant Background Experien

- I have taken relevant coursework such as Computer Organisation and
Architecture, Microprocessors and Microcontrollers, and Operating systems.

- During my last semester, I started building an OS during my Operating Systems
coursework. I developed a bootloader and a simple kernel using x86 assembly
and C, gaining experience with QEMU and other essential OS development tools.
The project is available on my GitHub.

- Currently, I'm working on a side project to emulate the 6502 processor in C to
deepen my understanding of hardware. This was inspired by my Microprocessors
coursework, where I studied the 8086 processor, x86, and ARM assembly.

- I have learnt a lot about GitLab and can work my way around it easily.

https://docs.rtems.org/docs/main/c-user/interrupt/index.html
https://gitlab.rtems.org/rtems/rtos/rtems/-/issues/5215
https://gitlab.rtems.org/rtems/rtos/rtems/-/issues/4171

Personal

I am a third-year Information Science and Engineering student at UVCE, Bengaluru. Over
time, I have explored various domains, including web development, Android
development, machine learning, competitive programming, and IoT. However, I have
come to realize that my true interest lies in understanding computers at a fundamental
level.

I started with assembly language, gradually shifting towards hardware-software
interaction. While my coursework has provided valuable insights, I prefer a hands-on
approach, which has deepened my interest in low-level programming.

As a space enthusiast, I was fascinated to learn that Perseverance runs on an
open-source OS. While exploring different types of operating systems, I came across
RTOS and eventually discovered RTEMS.

Experience
Free Software Experience/Contributions (optional):

- I have tried to fiddle with the linux kernel when I was having issues with my WiFi
card on my computer. This helped me to learn a lot about the Linux kernel’s
structure.

- As mentioned I built a basic bootloader for my os and here is the link.

- This will be my first open source project.

Language Skill Set

- Cand C++: Intermediate

- Java: Beginner

- Javascript and Typescript: Intermediate
- Python: Advanced

- x86 Assembly: Beginner

Reference Links and Web URLs (optional):

- My GitHub page
- My Blog

https://github.com/Sunil-Hegde/MyOS
https://github.com/Sunil-Hegde
https://blog.sunilhegde.tech/

	Remove set_vector() across all Architectures and BSPs
	Personal
	Experience

